博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
MongoDB 聚集运算之group,aggregate
阅读量:6243 次
发布时间:2019-06-22

本文共 9384 字,大约阅读时间需要 31 分钟。

  hot3.png

group

语法

db.collection.group({    key:{field:1},//按什么字段进行分组        initial:{count:0},//进行分组前变量初始化,该处声明的变量可以在以下回调函数中作为result的属性使用        cond:{},//类似mysql中的having,分组后的查询返回        reduce: function ( curr, result ) { }, //The function takes two arguments: the current document and an aggregation result document for that group.先迭代出分组,然后再迭代分组中的文档,即curr变量就代表当前分组中此刻迭代到的文档,result变量就代表当前分组。      keyf:function(doc){},//keyf和key二选一,传入的参数doc代表当前文档,如果分组的字段是经过运算后的字段用到,作用类似mysql中的group by left('2015-09-12 14:05:22',10);      finalize:function(result) {}//该result也就是reduce的result,都是代表当前分组,这个函数是在走完当前分组结束后回调;})

除了分组的key字段外,就只返回有result参数的回调函数中的操作的属性字段;

实例

# 表结构如下{  _id: ObjectId("5085a95c8fada716c89d0021"),  ord_dt: ISODate("2012-07-01T04:00:00Z"),  ship_dt: ISODate("2012-07-02T04:00:00Z"),  item: { sku: "abc123",          price: 1.99,          uom: "pcs",          qty: 25 }}
#Example1SELECT ord_dt, item_skuFROM ordersWHERE ord_dt > '01/01/2012'GROUP BY ord_dt, item_sku↓↓↓↓db.orders.group(   {     key: { ord_dt: 1, 'item.sku': 1 },     cond: { ord_dt: { $gt: new Date( '01/01/2012' ) } },     reduce: function ( curr, result ) { },     initial: { }   })#Example2SELECT ord_dt, item_sku, SUM(item_qty) as totalFROM ordersWHERE ord_dt > '01/01/2012'GROUP BY ord_dt, item_sku↓↓↓↓db.orders.group(   {     key: { ord_dt: 1, 'item.sku': 1 },     cond: { ord_dt: { $gt: new Date( '01/01/2012' ) } },     reduce: function( curr, result ) {                 result.total += curr.item.qty;             },     initial: { total : 0 }   })#Example3db.orders.group(   {     keyf: function(doc) {               return { day_of_week: doc.ord_dt.getDay() };           },     cond: { ord_dt: { $gt: new Date( '01/01/2012' ) } },    reduce: function( curr, result ) {                result.total += curr.item.qty;                result.count++;            },    initial: { total : 0, count: 0 },    finalize: function(result) {                  var weekdays = [                       "Sunday", "Monday", "Tuesday",                       "Wednesday", "Thursday",                       "Friday", "Saturday"                      ];                  result.day_of_week = weekdays[result.day_of_week];                  result.avg = Math.round(result.total / result.count);              }   })[  { "day_of_week" : "Sunday", "total" : 70, "count" : 4, "avg" : 18 },  { "day_of_week" : "Friday", "total" : 110, "count" : 6, "avg" : 18 },  { "day_of_week" : "Tuesday", "total" : 70, "count" : 3, "avg" : 23 }]

工作中用到的实例

#查询每个栏目最贵的商品价格, max()操作{  key:{cat_id:1},  cond:{},  reduce:function(curr , result) {      if(curr.shop_price > result.max) {          result.max = curr.shop_price;      }  },  initial:{max:0}}#查询每个栏目下商品的平均价格{  key:{cat_id:1},  cond:{},  reduce:function(curr , result) {      result.cnt += 1;      result.sum += curr.shop_price;  },  initial:{sum:0,cnt:0},  finalize:function(result) {      result.avg = result.sum/result.cnt; //在每次分组完毕后进行运算  }}

group其实略微有点鸡肋,因为既然用到了mongodb,那复制集和分片是避无可免的,而group是不支持分片的运算

Aggregation

聚合管道是一个基于数据处理管道概念的框架。通过使用一个多阶段的管道,将一组文档转换为最终的聚合结果。

 

语法

参考手册: 

db.collection.aggregate(pipeline, options);pipeline Array# 与mysql中的字段对比说明$project # 返回哪些字段,select,说它像select其实是不太准确的,因为aggregate是一个阶段性管道操作符,$project是取出哪些数据进入下一个阶段管道操作,真正的最终数据返回还是在group等操作中;$match # 放在group前相当于where使用,放在group后面相当于having使用$sort # 排序1升-1降 sort一般放在group后,也就是说得到结果后再排序,如果先排序再分组没什么意义;$limit # 相当于limit m,不能设置偏移量$skip # 跳过第几个文档$unwind # 把文档中的数组元素打开,并形成多个文档,参考Example1$group: { _id: 
,
: {
:
}, ... # 按什么字段分组,注意所有字段名前面都要加$,否则mongodb就为以为不加$的是普通常量,其中accumulator又包括以下几个操作符# $sum,$avg,$first,$last,$max,$min,$push,$addToSet#如果group by null就是 count(*)的效果$geoNear # 取某一点的最近或最远,在LBS地理位置中有用$out # 把结果写进新的集合中。注意1,不能写进一个分片集合中。注意2,不能写进

实例

Example1: unwind

> db.test.insert({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] });WriteResult({ "nInserted" : 1 })> db.test.aggregate( [ { $unwind : "$sizes" } ] ){ "_id" : 1, "item" : "ABC1", "sizes" : "S" }{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }db.test.insert({ "_id" : 2, "item" : "ABC1", sizes: [ "S", "M", "L",["XXL",'XL']] });WriteResult({ "nInserted" : 1 })> db.test.aggregate( [ { $unwind : "$sizes" } ] ){ "_id" : 1, "item" : "ABC1", "sizes" : "S" }{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }{ "_id" : 2, "item" : "ABC1", "sizes" : "S" }{ "_id" : 2, "item" : "ABC1", "sizes" : "M" }{ "_id" : 2, "item" : "ABC1", "sizes" : "L" }{ "_id" : 2, "item" : "ABC1", "sizes" : [ "XXL", "XL" ] } # 只能打散一维数组

Example2

#数据源{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-03-01T08:00:00Z") }{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-03-01T09:00:00Z") }{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-03-15T09:00:00Z") }{ "_id" : 4, "item" : "xyz", "price" : 5, "quantity" : 20, "date" : ISODate("2014-04-04T11:21:39.736Z") }{ "_id" : 5, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-04-04T21:23:13.331Z") }# 综合示例db.sales.aggregate([  # 由上到下,分阶段的进行,注意该数组中的顺序是有意义的  {    $project:{item:1,price:1,quantity:1} # 1.取出什么元素待操作;  },  {    $group:{ # 2. 对已取出的元素进行聚合运算;      _id:"$item", # 根据什么来分组      quantityCount:{$sum:'$quantity'},      priceTotal:{$sum:'$price'}    }  },  {    $sort:{      quantityCount:1 #3.升序    }  },  # 4.基于上面的结果,取倒数第二名  {    $skip: 2  },  {    $limit:1  },  # 5.然后把结果写到result集合中  {    $out:'result'  }])#表达式$month,$dayOfMonth,$year,$sum,$avgdb.sales.aggregate(   [      {        $group : {           _id : { month: { $month: "$date" }, day: { $dayOfMonth: "$date" }, year: { $year: "$date" } }, #按月日年分组           totalPrice: { $sum: { $multiply: [ "$price", "$quantity" ] } },           averageQuantity: { $avg: "$quantity" },           count: { $sum: 1 }        }      }   ])#结果{ "_id" : { "month" : 3, "day" : 15, "year" : 2014 }, "totalPrice" : 50, "averageQuantity" : 10, "count" : 1 }{ "_id" : { "month" : 4, "day" : 4, "year" : 2014 }, "totalPrice" : 200, "averageQuantity" : 15, "count" : 2 }{ "_id" : { "month" : 3, "day" : 1, "year" : 2014 }, "totalPrice" : 40, "averageQuantity" : 1.5, "count" : 2 }### 表达式$pushdb.sales.aggregate(   [     {       $group:         {           _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },           itemsSold: { $push:  { item: "$item", quantity: "$quantity" } }         }     }   ])# result{   "_id" : { "day" : 46, "year" : 2014 },   "itemsSold" : [      { "item" : "abc", "quantity" : 10 },      { "item" : "xyz", "quantity" : 10 },      { "item" : "xyz", "quantity" : 5 },      { "item" : "xyz", "quantity" : 10 }   ]}{   "_id" : { "day" : 34, "year" : 2014 },   "itemsSold" : [      { "item" : "jkl", "quantity" : 1 },      { "item" : "xyz", "quantity" : 5 }   ]}{   "_id" : { "day" : 1, "year" : 2014 },   "itemsSold" : [ { "item" : "abc", "quantity" : 2 } ]}### 表达式$addToSetdb.sales.aggregate(   [     {       $group:         {           _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },           itemsSold: { $addToSet: "$item" }         }     }   ])#result{ "_id" : { "day" : 46, "year" : 2014 }, "itemsSold" : [ "xyz", "abc" ] }{ "_id" : { "day" : 34, "year" : 2014 }, "itemsSold" : [ "xyz", "jkl" ] }{ "_id" : { "day" : 1, "year" : 2014 }, "itemsSold" : [ "abc" ] }### 表达式 $firstdb.sales.aggregate(   [     { $sort: { item: 1, date: 1 } },     {       $group:         {           _id: "$item",           firstSalesDate: { $first: "$date" }         }     }   ])# result{ "_id" : "xyz", "firstSalesDate" : ISODate("2014-02-03T09:05:00Z") }{ "_id" : "jkl", "firstSalesDate" : ISODate("2014-02-03T09:00:00Z") }{ "_id" : "abc", "firstSalesDate" : ISODate("2014-01-01T08:00:00Z") }

Example3

db.sales.aggregate(   [      {        $group : {           _id : null, # 如果为null,就统计出全部           totalPrice: { $sum: { $multiply: [ "$price", "$quantity" ] } },           averageQuantity: { $avg: "$quantity" },           count: { $sum: 1 }        }      }   ])

Example4

# 数据源{ "_id" : 8751, "title" : "The Banquet", "author" : "Dante", "copies" : 2 }{ "_id" : 8752, "title" : "Divine Comedy", "author" : "Dante", "copies" : 1 }{ "_id" : 8645, "title" : "Eclogues", "author" : "Dante", "copies" : 2 }{ "_id" : 7000, "title" : "The Odyssey", "author" : "Homer", "copies" : 10 }{ "_id" : 7020, "title" : "Iliad", "author" : "Homer", "copies" : 10 }# 根据作者分组,获得其著多少书籍db.books.aggregate(   [     { $group : { _id : "$author", books: { $push: "$title" } } }   ])# result{ "_id" : "Homer", "books" : [ "The Odyssey", "Iliad" ] }{ "_id" : "Dante", "books" : [ "The Banquet", "Divine Comedy", "Eclogues" ] }# 通过系统变量$$ROOT(当前的根文档)来分组db.books.aggregate(   [     { $group : { _id : "$author", books: { $push: "$$ROOT" } } }   ])# result{  "_id" : "Homer",  "books" :     [       { "_id" : 7000, "title" : "The Odyssey", "author" : "Homer", "copies" : 10 },       { "_id" : 7020, "title" : "Iliad", "author" : "Homer", "copies" : 10 }     ]}{  "_id" : "Dante",  "books" :     [       { "_id" : 8751, "title" : "The Banquet", "author" : "Dante", "copies" : 2 },       { "_id" : 8752, "title" : "Divine Comedy", "author" : "Dante", "copies" : 1 },       { "_id" : 8645, "title" : "Eclogues", "author" : "Dante", "copies" : 2 }     ]}

邮政编码数据集的聚合实例: 

对用户爱好数据做聚合实例:

转载于:https://my.oschina.net/HJCui/blog/833994

你可能感兴趣的文章
14.linux下复制粘贴
查看>>
网络编程
查看>>
List数据转Map数据并进行分组排序
查看>>
word - 如何让 图片任意移动
查看>>
安装Oracle
查看>>
LoadRunner基础知识
查看>>
How to helloworld on Xcode
查看>>
PHP常见设计模式简单实现
查看>>
java课堂相关问题
查看>>
图片溢出div问题的最终解决方案
查看>>
区分Web Server和应用服务器
查看>>
计算字符串长度,加车头
查看>>
$ sudo python -m pip install pylint 出错解决方法
查看>>
安卓返回信息方式
查看>>
20145209刘一阳 《网络对抗》Exp7 网络欺诈技术防范
查看>>
常用的 JS 排序算法整理
查看>>
Dora.Interception,为.NET Core度身打造的AOP框架 [3]:多样化拦截器应用方式
查看>>
win7为鼠标右键添加“用Photoshop编辑”选项
查看>>
内部div自动扩张剩余宽度
查看>>
hbase伪分布式搭建和完全分布式搭建
查看>>